Thursday 31 July 2014

CRUST: Cascading Risk and Uncertainty assessment of earthquake Shaking and Tsunami

Bristol University's Faculty of Engineering have developed an interesting project on earthquakes and triggered tsunamis. The project is called CRUST: Cascading Risk and Uncertainty assessment of earthquake Shaking and Tsunami. I am looking forward to following the research outputs from this project.


The following extract is from Bristol University's Faculty news pages:




Building resilient infrastructure/communities against extremely large earthquakes is a global and urgent problem in active seismic regions. Economic consequences of natural catastrophes have become so devastating, reaching hundreds of billions of pounds in loss, and numerous mega-thrust events are anticipated to occur near vulnerable megacities around the world. The coordination on multiple, inter-related geophysical hazards (e.g. ground shaking and tsunami), analyses of which have been historically undertaken in a disintegrated manner, is needed. Although uncertainty is ubiquitous in natural hazards, treatment of uncertainty in risk assessment is fragmented. Improving the scientific understanding of hazard processes is crucial to better risk forecasting.


CRUST (Cascading Risk and Uncertainty assessment of earthquake Shaking and Tsunami) tackles the global challenge of modelling cascading hazards due to mega-thrust subduction earthquakes by developing a novel methodology for multi-hazards risk assessment from a holistic standpoint and by promoting dynamic and informed decision-making processes for catastrophe risk management. The scientific innovation of the CRUST project lies in a coherent treatment of risk and uncertainty related to compounding risks due to mainshock ground shaking, massive tsunami, and prolific aftershocks acting on coastal infrastructure. Creating a blueprint of the methodology and demonstrating it for several seismic regions are the goals of this project.


Specifically, the research objectives of CRUST are fivefold: (1) to develop an integrated multi-hazards impact assessment methodology for cascading earthquake-related phenomena (i.e. mainshock followed by tsunami and multiple aftershocks); (2) to characterise earthquake slips for future mega-thrust earthquakes as random field, and to evaluate the impact of uncertain slips on strong motion and tsunami simulations; (3) to model a sequence of mainshock-aftershock earthquake records based on actual observations, and to assess their combined effects on nonlinear structural response; (4) to model off-shore tsunami generation and propagation, to characterise tsunami fragility based on numerical simulations, and to validate these with a unique set of experimental data and field observations for the 2011 Tohoku earthquake and tsunami; and (5) to develop practice-oriented engineering guidelines and tools for multi-hazards impact assessment, and to demonstrate their capabilities by applying them to other subduction zones, such as the Hikurangi (New Zealand) and Cascadia (Canada) zones.

United Nations "Multi-hazard Disaster Risk Assessment" Conference

There is an upcoming conference on multi-hazards being held in China (15/09/2014 - 17/09/2014): United Nations International Conference on Space-based Technologies for Disaster Management "Multi-hazard Disaster Risk Assessment".


The following is an extract from the conference website:




Introduction



UN-SPIDER is the United Nations Platform for Space-based information for Disaster Management and Emergency Response, a programme implemented by the United Nations Office for Outer Space Affairs (UNOOSA). The UN-SPIDER Beijing Office is pleased to announce the “United Nations International Conference on Space-based Technologies for Disaster Management - "Multi-hazard Disaster Risk Assessment" from 15 to 17 September 2014.

The UN-SPIDER Beijing Office has successfully organised three conferences since 2011. Previous conferences covered the themes of “Best Practices for Risk Reduction and Rapid Response mapping” in 2011, “Risk Assessment in the context of global climate change” in 2012 and “Disaster risk identification, assessment and monitoring” in 2013. These conferences offered a forum for disaster management communities and experts to strengthen their capabilities in using space based information to identify, assess, monitor and respond to disaster risks and integrate space technology into long-term disaster risk management efforts.

 

Rationale

Recent disasters around the world have highlighted shortfalls in efforts of the governments and communities, including development partners, in reducing disaster risks. Although early warnings of hydrologic hazards (floods, storm surges, coastal erosion and droughts) and meteorological hazards (cyclones, tornadoes, windstorms etc.) are able to save human lives in some cases, the economic and environmental losses are often huge and recovery will usually take years to normalize. Therefore, countries need to have an increasing focus on economic, environmental and human costs of disasters and develop approaches to lessen the risks and reduce loss of lives and property.

All the elements of disaster risk are spatial in nature. Earth observation and geospatial data provide critical information on elements of risk delivered in the form of maps. These help in predicting and identifying risks more accurately as well as planning responses in a timely manner when they degenerate into a disaster.

Multi-hazard risks give an indication of the overall risk posed to a community. Multi-hazard approaches are valuable in providing an overview of the overall risk and thus enhancing effective planning countermeasures. Such approaches avoid enhancing further risks in the attempt to reducing already existing ones. The purpose of this conference is therefore to promote the role of space-based and geospatial information in a multi-hazard disaster risk assessment. It seeks to bring together experts and end-users to a single platform to ensure that space-based information is effectively employed in decision-making towards saving lives and reducing economic losses.

Conference Sessions

The conference will cover the following topics:


Session 1: Disaster Risk Management and Space-based information: This session will discuss experiences and good practices of disaster risk management at different levels, with a focus on the role and contribution of space-based information.


Session 2: Approach and methodology in using space based information in multi-hazard identification and risk assessment This session will discuss the applied research and development on the approaches, models, methodologies, tools, service platforms and operational projects related to multi-hazard identification and disaster risk assessment.


Session 3: Space-based information resources for hazard identification and risk assessment This session will discuss the space-based information advances in remote sensing data, information products, software used for multi-hazard monitoring, data visualization and data dissemination tools for disaster risk assessment.


Session 4: Space-based information for damage and loss estimation This session will discuss the methods and present case studies demonstrating the use of space–based information for disaster damage and loss assessment. This session aims to extend the scope of space-based information beyond emergency mapping, providing valuable information in damage and loss assessment.


Session 5: Networking and engagement with the UN-SPIDER network This session will aim at promoting the engagement of Member States and partner organisations with the UN-SPIDER Pprogramme. The session will discuss best practices of using space-based information and the impacts of the technical advisory support offered through the UN-SPIDER Programme.


Working groups

Working groups will be organised to discuss the cooperation related to disaster risk reduction mapping services and products, information sharing and cooperation projects in this area. The working groups will develop guiding points on ‘drought monitoring and risk assessment’ at the national level.

 

Target Audience

Disaster managers, policy makers, providers of space technology solutions/tools/applications from governments, academia, research, NGO and corporate sector. Number of expected participants: 120

 

How to apply and application deadline

The final deadline for registration was 29 June 2014.